Introduction
When you use computers, entertainment systems or telephones, the various pieces and parts of the systems make up a community of electronic devices. These devices communicate with each other using a variety of wires, cables, radio signals and infrared light beams, and an even greater variety of connectors, plugs and protocols. Bluetooth is a wireless protocol for exchanging data over short distances from fixed and mobile devices, creating personal area networks (PANs). It can connect several devices, overcoming problems of synchronization.
There are lots of different ways that electronic devices can connect to one another. For example:
- Component cables
- Electrical wires
- Ethernet cables
- Wi-Fi
- Infrared signals
Bluetooth is a standard and communications protocol primarily designed for low power consumption, with a short range (power-class-dependent: 1 meter, 10 meters, 100 meters) based on low-cost transceiver microchips in each device. Bluetooth makes it possible for these devices to communicate with each other when they are in range. Because the devices use a radio (broadcast) communications system, they do not have to be in line of sight of each other.
Class | Maximum Permitted Power mW (dBm) | Range (approximate) |
---|---|---|
Class 1 | 100 mW (20 dBm) | ~100 meters |
Class 2 | 2.5 mW (4 dBm) | ~10 meters |
Class 3 | 1 mW (0 dBm) | ~1 meter |
In most cases the effective range of class 2 devices is extended if they connect to a class 1 transceiver, compared to a pure class 2 network. This is accomplished by the higher sensitivity and transmission power of Class 1 devices.
Version | Data Rate |
---|---|
Version 1.2 | 1 Mbit/s |
Version 2.0 + EDR | 3 Mbit/s |
WiMedia Alliance (proposed) | 53 - 480 Mbit/s |
Specifications and features
The Bluetooth specification was developed in 1994 by Jaap Haartsen and Sven Mattisson, who were working for Ericsson Mobile Platforms in Lund, Sweden. The specification is based on frequency-hopping spread spectrum technology.
The specifications were formalized by the Bluetooth Special Interest Group (SIG). The SIG was formally announced on May 20, 1998.
Bluetooth 1.0 and 1.0B
Versions 1.0 and 1.0B had many problems, and manufacturers had difficulty making their products interoperable. Versions 1.0 and 1.0B also included mandatory Bluetooth hardware device address (BD_ADDR) transmission in the Connecting process (rendering anonymity impossible at the protocol level), which was a major setback for certain services planned for use in Bluetooth environments.
Bluetooth 1.1
* Ratified as IEEE Standard 802.15.1-2002.
* Many errors found in the 1.0B specifications were fixed.
* Added support for non-encrypted channels.
* Received Signal Strength Indicator (RSSI).
Bluetooth 1.2
This version is backward compatible with 1.1 and the major enhancements include the following:
- Faster Connection and Discovery
- Higher transmission speeds in practice, up to 721 kbit/s, than in 1.1.
- Extended Synchronous Connections (eSCO), which improve voice quality of audio links.
- Host Controller Interface (HCI) support for three-wire UART.
- Ratified as IEEE Standard 802.15.1-2005.
This version of the Bluetooth specification was released on November 10, 2004. It is backward compatible with the previous version 1.1. The main difference is the introduction of an Enhanced Data Rate (EDR) for faster data transfer. The nominal rate of EDR is about 3 megabits per second, although the practical data transfer rate is 2.1 megabits per second.
According to the 2.0 specification, EDR provides the following benefits:
- Three times faster transmission speed — up to 10 times (2.1 Mbit/s) in some cases.
- Reduced complexity of multiple simultaneous connections due to additional bandwidth.
- Lower power consumption through a reduced duty cycle.
Bluetooth Core Specification Version 2.1 is fully backward compatible with 1.1, and was adopted by the Bluetooth SIG on July 26, 2007. This specification includes the following features:
- Extended inquiry response: provides more information during the inquiry procedure to allow better filtering of devices before connection.
- Sniff subrating: reduces the power consumption when devices are in the sniff low-power mode, especially on links with asymmetric data flows.
- Encryption Pause Resume: enables an encryption key to be refreshed, enabling much stronger encryption for connections that stay up for longer than 23.3 hours (one Bluetooth day).
- Secure Simple Pairing: radically improves the pairing experience for Bluetooth devices, while increasing the use and strength of security. It is expected that this feature will significantly increase the use of Bluetooth.
- Near Field Communication (NFC) cooperation: automatic creation of secure Bluetooth connections when NFC radio interface is also available. This functionality is part of the Secure Simple Pairing where NFC is one way of exchanging pairing information.
Bluetooth takes small-area networking to the next level by removing the need for user intervention and keeping transmission power extremely low to save battery power.
Bluetooth is essentially a networking standard that works at two levels:
- It provides agreement at the physical level -- Bluetooth is a radio-frequency standard.
- It provides agreement at the protocol level, where products have to agree on when bits are sent, how many will be sent at a time, and how the parties in a conversation can be sure that the message received is the same as the message sent.
Bluetooth wireless PC card
How Bluetooth Operates
Bluetooth networking transmits data via low-power radio waves. It communicates on a frequency of 2.45 gigahertz (actually between 2.402 GHz and 2.480 GHz, to be exact). This frequency band has been set aside by international agreement for the use of industrial, scientific and medical devices (ISM).
One of the ways Bluetooth devices avoid interfering with other systems is by sending out very weak signals of about 1 milliwatt. By comparison, the most powerful cell phones can transmit a signal of 3 watts. The low power limits the range of a Bluetooth device to about 10 meters (32 feet).
Bluetooth can connect up to eight devices simultaneously. With all of those devices in the same 10-meter (32-foot) radius, you might think they'd interfere with one another, but it's unlikely. Bluetooth uses a technique called spread-spectrum frequency hopping that makes it rare for more than one device to be transmitting on the same frequency at the same time. In this technique, a device will use 79 individual, randomly chosen frequencies within a designated range, changing from one to another on a regular basis. In the case of Bluetooth, the transmitters change frequencies 1,600 times every second, meaning that more devices can make full use of a limited slice of the radio spectrum.
When Bluetooth-capable devices come within range of one another, an electronic conversation takes place to determine whether they have data to share or whether one needs to control the other. The user doesn't have to press a button or give a command -- the electronic conversation happens automatically. Once the conversation has occurred, the devices -- whether they're part of a computer system or a stereo -- form a network.
Bluetooth Security
In any wireless networking setup, security is a concern. Devices can easily grab radio waves out of the air, so people who send sensitive information over a wireless connection need to take precautions to make sure those signals aren't intercepted. Bluetooth technology is no different -- it's wireless and therefore susceptible to spying and remote access.
Bluetooth offers several security modes, and device manufacturers determine which mode to include in a Bluetooth-enabled gadget. In almost all cases, Bluetooth users can establish "trusted devices" that can exchange data without asking permission. When any other device tries to establish a connection to the user's gadget, the user has to decide to allow it. Service-level security and device-level security work together to protect Bluetooth devices from unauthorized data transmission. Security methods include authorization and identification procedures that limit the use of Bluetooth services to the registered user and require that users make a conscious decision to open a file or accept a data transfer. As long as these measures are enabled on the user's phone or other device, unauthorized access is unlikely. A user can also simply switch his Bluetooth mode to "non-discoverable" and avoid connecting with other Bluetooth devices entirely. If a user makes use of the Bluetooth network primarily for synching devices at home, this might be a good way to avoid any chance of a security breach while in public.
Health concerns
Bluetooth uses the microwave radio frequency spectrum in the 2.4 GHz to 2.4835 GHz range. Maximum power output from a Bluetooth radio is 100 mW, 2.5 mW, and 1 mW for Class 1, Class 2, and Class 3 devices respectively, which puts Class 1 at roughly the same level as mobile phones, and the other two classes much lower. Accordingly, Class 2 and Class 3 Bluetooth devices are considered less of a potential hazard than mobile phones, and Class 1 may be comparable to that of mobile phones.
Any Bluetooth device will transmit the following information on demand:
- Device name.
- Device class.
- List of services.
- Technical information, for example, device features, manufacturer, Bluetooth specification used, clock offset.
How Bluetooth Operates
Bluetooth networking transmits data via low-power radio waves. It communicates on a frequency of 2.45 gigahertz (actually between 2.402 GHz and 2.480 GHz, to be exact). This frequency band has been set aside by international agreement for the use of industrial, scientific and medical devices (ISM).
One of the ways Bluetooth devices avoid interfering with other systems is by sending out very weak signals of about 1 milliwatt. By comparison, the most powerful cell phones can transmit a signal of 3 watts. The low power limits the range of a Bluetooth device to about 10 meters (32 feet).
Bluetooth can connect up to eight devices simultaneously. With all of those devices in the same 10-meter (32-foot) radius, you might think they'd interfere with one another, but it's unlikely. Bluetooth uses a technique called spread-spectrum frequency hopping that makes it rare for more than one device to be transmitting on the same frequency at the same time. In this technique, a device will use 79 individual, randomly chosen frequencies within a designated range, changing from one to another on a regular basis. In the case of Bluetooth, the transmitters change frequencies 1,600 times every second, meaning that more devices can make full use of a limited slice of the radio spectrum.
When Bluetooth-capable devices come within range of one another, an electronic conversation takes place to determine whether they have data to share or whether one needs to control the other. The user doesn't have to press a button or give a command -- the electronic conversation happens automatically. Once the conversation has occurred, the devices -- whether they're part of a computer system or a stereo -- form a network.
Bluetooth Security
In any wireless networking setup, security is a concern. Devices can easily grab radio waves out of the air, so people who send sensitive information over a wireless connection need to take precautions to make sure those signals aren't intercepted. Bluetooth technology is no different -- it's wireless and therefore susceptible to spying and remote access.
Bluetooth offers several security modes, and device manufacturers determine which mode to include in a Bluetooth-enabled gadget. In almost all cases, Bluetooth users can establish "trusted devices" that can exchange data without asking permission. When any other device tries to establish a connection to the user's gadget, the user has to decide to allow it. Service-level security and device-level security work together to protect Bluetooth devices from unauthorized data transmission. Security methods include authorization and identification procedures that limit the use of Bluetooth services to the registered user and require that users make a conscious decision to open a file or accept a data transfer. As long as these measures are enabled on the user's phone or other device, unauthorized access is unlikely. A user can also simply switch his Bluetooth mode to "non-discoverable" and avoid connecting with other Bluetooth devices entirely. If a user makes use of the Bluetooth network primarily for synching devices at home, this might be a good way to avoid any chance of a security breach while in public.
Health concerns
Bluetooth uses the microwave radio frequency spectrum in the 2.4 GHz to 2.4835 GHz range. Maximum power output from a Bluetooth radio is 100 mW, 2.5 mW, and 1 mW for Class 1, Class 2, and Class 3 devices respectively, which puts Class 1 at roughly the same level as mobile phones, and the other two classes much lower. Accordingly, Class 2 and Class 3 Bluetooth devices are considered less of a potential hazard than mobile phones, and Class 1 may be comparable to that of mobile phones.